

Automated, Multifidelity Aero-Structural Modeling for Design of Military Aircraft

Massachusetts Institute of Technology

John F. Dannenhoffer, III

Dean E. Bryson Aerospace Systems Directorate

Air Force Research Laboratory

Nitin D. Bhagat Applied Mechanics Division

University of Dayton Research Institute

Robert Haimes

Aerospace Computational Design Laboratory Aerospace Computational Methods Laboratory Massachusetts Institute of Technology Syracuse University

<u>The Need:</u> Rapid, accurate performance predictions for early design

- Avoid costly design flaws
- Leverage beneficial physics

Barriers:

- Level of definition required
- Time investment in CAD geometry
- Touch labor to generate analysis inputs
- Reverse engineering geometry for different analyses

Design Maturity

<u>The Goal:</u> A design environment enabling a flexible spectrum of analysis fidelities at any level of design maturity

<u>The Idea:</u> Active, persistent, use-specific geometry produced from a Design Model conveying Design Intent

- What features represent
- How features vary parametrically
- How analyses treat different features

<u>Use-specific geometry views...</u>

EngineeringComputationalSketchAircraftPadPrototypeAvailable at
acdl.mit.edu/ESPSyntheses

Driven by parametrization...

User-Parameterized Shape and Topology

 Analytically differentiated with respect to continuous user design parameters

Model (De-)Featuring

Distribution Statement A: Approved for public release, distribution unlimited. Case No. 88ABW-2020-0280

Bryson, D. E., Haimes, R., and Dannenhoffer, J. F., III, "Toward the Realization of a Highly Integrated, Multidisciplinary, Multifidelity Design Environment," AIAA SciTech 2019, AIAA 2019-2225